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1. Introduction. The idea of quark-hadron duality was formulated in the paper [1] as follows: inclusive hadronic cross sections, once they are appropriately averaged over an energy interval, must approximately coincide with the corresponding quantities derived from the quark-gluon picture. 

The following quantities and functions will be considered here: 

· the ratio of hadronic to leptonic 
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-decay widths in the vector channel 
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· the “light” Adler function, which is constructed from 
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-decay data 
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· the smeared 
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 function 



[image: image6.wmf]22

0

()

()

()

Rs

Rsds

ss

p

¥

D

¢

D

¢

=;

¢

-+D

ò


(3)

· the hadronic contribution to the anomalous magnetic moment of the muon (in the leading order in electromagnetic coupling constant ) 
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where 
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 is the vacuum polarization factor; 

·  the strong interaction contribution to the running of the fine structure constant: 
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The approach that we use here to describe the quantities and functions mentioned above is based on the nonperturbative expansion method [2,3,4,5]. We formulate a model that also incorporates a summation of threshold singularities [6] and takes into account the nonperturbative character of the light quark masses [7]. 

2. The method. The method on which we construct a description of the 
[image: image10.wmf]R

-related quantities is variational perturbation theory (VPT). Within this approach, a quantity under consideration is represented in the form of the so-called floating or variational series. A certain variational procedure is combined with the possibility of calculating corrections to the principal contribution, which allows the possibility of probing the validity of the leading contribution and the region of applicability of the results obtained. The VPT series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. This allows one to deal with considerably lower energies than in the case of perturbation theory. 

The new expansion parameter 
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 is connected with the initial coupling constant 
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 by the relation [2, 3]
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where 
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 is a positive constant. As follows from (6), for any value of the coupling constant
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, the expansion parameter 
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 obeys the inequality 
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While remaining within the range of applicability of the 
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-expansion, one can deal with low-energy processes where 
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 is no longer small. 

The positive parameter 
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 plays the role of an auxiliary parameter of a variational type, which is associated with the use of a floating series. Here we will fix this parameter using some further information, coming from the potential approach to meson spectroscopy. As has been shown in [3], 
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 is determined by requiring that 
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. The behavior of the functions 
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 gives evidence for the convergence of the results, in accordance with the phenomenon of induced convergence.
 The behavior of the 
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-function at large value of the coupling constant, 
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, corresponds to the infrared singularity of the running coupling: 
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 at small 
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. In the potential quark model this 
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 behavior is associated with the linear growth of the quark-antiquark potential. 

The VPT approach allows one to perform the analytic continuation from the Euclidean to Minkowskian region self-consistently [11]. This situation is similar to the analytic approach in QCD [12,13], where the connection space- and timelike regions can also be established self-consistently [14,15]. A problem of transition from the spacelike region, where the running coupling is initially defined by the renormalization group method, to the timelike region within perturbation theory has been discussed in [16,17,18]. 

Resummation of threshold singularities. In describing a charged particle-antiparticle system near threshold, it is well known from QED that the so-called Coulomb resummation factor plays an important role. This resummation, performed on the basis of the nonrelativistic Schrödinger equation with the Coulomb potential 
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-factor [19,20]. In the threshold region one cannot truncate the perturbative series and the 
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-factor should be taken into account in its entirety. The 
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-factor appears in the parameterization of the imaginary part of the quark current correlator, which can be approximated by the Bethe-Salpeter amplitude of the two charged particles, 
[image: image34.wmf]BS

(0)

x

c

=

 [21]. The nonrelativistic replacement of this amplitude by the wave function, which obeys the Schrödinger equation with the Coulomb potential, leads to the appearance of the resummation factor in the parameterization of the 
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-function. 

For a systematic relativistic analysis of quark-antiquark systems, it is essential from the very beginning to have a relativistic generalization of the 
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-factor. A new form for this relativistic factor in the case of QCD has been proposed in [6] 
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where 
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 is the rapidity which related to 
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 in QCD. The function 
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. The relativistic resummation factor (8) reproduces both the expected nonrelativistic and ultrarelativistic limits and corresponds to a QCD-like Coulomb potential. Here we consider the vector channel for which a threshold resummation 
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-factor for the s-wave states is used. For the axial-vector channel the 
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-factor is required. The corresponding relativistic factor has been found in [27]. 

To incorporate the quark mass effects one usually uses the approximate expression proposed in [1,22,23] above the quark-antiquark threshold 
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where 
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The function 
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 is taken in the Schwinger approximation [24]. 

One cannot directly use the perturbative expression for 
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 in Eq. (9), which contains unphysical singularities, to calculate, for example, the Adler 
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-function. Instead, one can use the VPT representation for
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. Besides this replacement, one has to modify the expression (9) in such a way as to take into account summation of an arbitrary number of threshold singularities. Including the threshold resummation factor (8) leads to the following modification of the expression (9) (see [25] and [26]) for a particular quark flavor 
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The potential term corresponding to the 
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 function gives the principal contribution to 
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, the correction 
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 amounting to less than twenty percent for the whole energy interval [27]. 

Effective quark masses. A solution of the Schwinger-Dyson equations [28,29,30,31] demonstrates a fixed infrared behavior of the invariant charge and the quark mass function. The mass function of the light quarks at small momentum looks like a plateau with a height approximately equal to the constituent mass, then with increasing momentum the mass function rapidly decreases and approaches the small current mass. 

This behavior can be understood by using the concept of the dynamical quark mass. This mass has an essentially nonperturbative nature. Its connection with the quark condensate has been established in [32]. By using an analysis based on the Schwinger-Dyson equations a similar relation has been found in [33]. It has been demonstrated in [34] that on the mass-shall one has a gauge-independent result for the dynamical mass 
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Figure 1. Function 
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A result obtained in [35] demonstrates the step-like behavior of the mass function. The height 
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 of the plateau is given by the quark condensate (12). According to these results it is reasonable to assume that at small 
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The following analysis was performed by using the model mass function 
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3. Physical quantities and functions generated by 
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. In this section we apply the model we have formulated to describe the physical quantities and functions described in the Introduction.

 Inclusive decay of the 
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-lepton [36]. The experimental data obtained by the ALEPH and OPAL collaborations for this ratio are [37,38,39]: 
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. In our analysis we use the nonstrange vector channel spectral function obtained by the ALEPH collaboration [37] and keep in all further calculations the value 
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 agrees with the results of papers [41,42,43]. A similar value of the continuum parameter is used in the QCD sum rules [44,45,46,47]. 

The low energy 
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 in Figs. 2 and 3. In Fig. 2 we also plot three theoretical curves corresponding to masses of the light quarks of 
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 MeV. Fig. 2 demonstrates that the shape of the infrared tail of the 
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 [37]. The values of the light quark masses are close to the constituent quark masses and therefore incorporate nonperturbative effects. These values are consistent with other results of [49,50] and [51] and with the analysis performed in [41,52] and [53]. 
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with a finite value of 
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 to keep away from the cut. If 
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 is sufficiently large and both the experimental data and the theory prediction are smeared, it is possible to compare theory with experiment. Equation (13) and the dispersion relation for the correlator 
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Figure 4. Smeared function for 
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As with the Adler function we will construct the “light” experimental function
[image: image141.wmf]()

Rs

D

. For this purpose we match the experimental data taken with 
[image: image142.wmf]0

ss

<

 to the theoretical result taken with 
[image: image143.wmf]0

ss

>

. The value 
[image: image144.wmf]0

s

 is found from the duality relation. 
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The expression (4) can be rewritten in terms of the 
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-function 
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It is should be emphasized that the expressions (4) and (14) are equivalent due to the analytic properties of the function
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In our calculations we take into account the matching conditions at quark thresholds according to the procedure described in [15]. If we take for the parameter 
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The method based on the analytic perturbation theory leads to the close result: 
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Hadronic contribution to the fine structure constant. Consider the hadronic correction to the electromagnetic fine structure constant 
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-boson scale. The evolution of the running electromagnetic coupling is described by 
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The leptonic part 
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At the 
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This value is to be compared with predictions extracted from a wide range of data describing 
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The result based on the analytic perturbation theory is 
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 [7]. We see that our result is consistent with previous theoretical/experimental evaluations, with comparable uncertainties. 

4. Summary. A method of performing QCD calculations in the nonperturbative domain has been developed. This method is based on the variational perturbation theory in QCD, takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. 

The following quantities have been analyzed: the inclusive 
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. We have demonstrated that the proposed method allows us to describe these quantities rather well. 
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�It has been observed empirically [8, 9] that the results seem to converge if the variational parameter is chosen, in each order, according to some variational principle. This induced-convergence phenomenon is also discussed in [10].
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